Quivers, 3d gauge theories and 3-mfds

Summary workshop: knots, homologies and physics

Shi Cheng

May-10-2024 Fudan University

w/ P. Sułkowski 2302.13371, 2310.07624

Quivers

Quivers are symmetric matrices

$$P_{C_{ij}}\left(q;x_{1},\cdots,x_{N}\right):=\sum_{d_{1},\ldots,d_{N}=0}^{\infty}\left(-\sqrt{q}\right)^{\sum\limits_{i,j=1}^{N}C_{ij}d_{i}d_{j}}\frac{x_{1}^{d_{1}}x_{2}^{d_{2}}\cdots x_{N}^{d_{N}}}{\left(q;q\right)_{d_{1}}\left(q;q\right)_{d_{2}}\cdots\left(q;q\right)_{d_{N}}}.$$

Knots-quivers correspondence

Knots
$$\longrightarrow C_{ij}/\sim$$

Equivalent quivers

Motivation

• We hope to use physics and geometry to understand this correspondence and quivers.

Tools

- 3d N=2 gauge theories: dualities, gauging
- String theories: M-theory/IIB duality, 3d brane webs
- 3-manifolds: surgery, Kirby moves

• We find:

Knots \leftrightarrow Quivers \leftrightarrow 3d N=2 gauge theories \leftrightarrow 3-mfds

3d N=2 plumbing theories

 The vortex part. function some theories can be written as quiver generating functions

$$Z^{\text{1-loop}}Z_{\mathfrak{a}}^{\text{vortex}} = P_{C_{ij}}(x_i)$$

• 3d N=2 theories $U(1) \times \cdots \times U(1) + n \Phi_i$

$$K_{ij}^{
m eff} = C_{ij}$$
 mixed CS levels = quivers

Plumbing graph

• A new quiver diagram:

Notation:

1 ⊕

Quiver theories:

$$C_{ij} = \begin{bmatrix} r & k \\ k & s \end{bmatrix}$$

Generic theories:

3d dualities

Gauge the mirror duality -> ST-moves

ST-moves: application

Examples

plumbing graphs

quivers

Decoupling

After decoupling the matter, ST-moves reduce to Kirby moves

• Why is it a Kirby move?

Closed 3-manifolds, T[M_3] theories

• In Gadde, Gukov, Putrov "Fivebranes and 4-mfds" [1306.4320]. Pure plumbing theories are realized by wrapping a single M5-brane on closed three-manifolds.

Linking number =
$$CSlevels$$

 $Lij = Kij$

Kirby moves

Kirby moves are integrating in/out gauge nodes U(1)_k:

• For 3-mfds, the Kirby-I move is an equivalent surgery.

Question: how to add matters?

• Does the matter <u>to corresponde</u> to some structures on the 3-mfds?

```
How to geometrically realize it?
```

Rational equivalent surgery

The identical surgery, and rational equivalent surgery

An observation

Is the matter the circle for identical surgery?

- However, the identical circle can be ignored on 3-mfds and is not physical, while the matter field is physical.
- So, we should do something to make it physical.
- Before that, let us revisit the GGP's construction using string theory.

Revisit GGP's construction

		-			_		_			_
11d	branes	0	1	2	3	4	5	6	9	#
M-theory	$N_c \text{ M5}$	0	1	2				6	$9_{\rm A}$	#
IIA	N_c D4	0	1	2				6	$9_{\rm A}$	
IIB	N_c D3	0	1	2				6		
IIA	D0									#
IIA	D6	0	1	2	3	4	5		$9_{\rm A}$	
IIB	$D5 \xrightarrow{S} NS5$	0	1	2	3	4	5			
M-theory	M5"	0	1	2	3	4			$9_{\rm A}$	
IIA	NS5"	0	1	2	3	4			$9_{\rm A}$	
IIB	$NS5'' \xrightarrow{S} D5$	0	1	2	3	4			9_{B}	
M-theory	M2	0					5		$9_{\rm A}$	
IIB	$D1 \xrightarrow{S} F1$	0					5			

Putting a M5-brane on it duals to a 3d brane web of U(1)_k

OV defect -> matter

Adding D5-branes leads to matters

Adding a 1 M5-brane on OV defect in the cotangle bundle realizes a matter field.

 The neighborhood of the intersection is always an idnetical surgery circle:

- The matter circle/intersection has to be S_q'
- Example:

The Ooguri-Vafa construction

• A point to clarify: the OV-defect/brane does not really interect with the 3-mfd.

* The M2-brane is a cylinder, and only when it is massless, the L_K and M_3 could kiss each other:

$$\mathcal{I}_{k} \cap M_{3} = K$$

ST-move and 3-mfds

• ST-move is a particular Kirby-I move with an OV-defect/brane:

Kirby-II: handle-slides

• Kirby-II is a connected sum of surgery circles (gauge circles):

• In the presence of the OV defect (or matter):

• Kirby-II is the linear sum of scalar fields: $\phi_1' = n\phi_2 + \phi_1 \,, \phi_2' = \phi_2$

Seiberg duality

SQED-XYZ duality

Superpotential

$$\mathcal{W} = 0$$
 $\mathcal{W} = \mathbb{P}, \mathbb{P}_2 \mathcal{M}.$

• Flavor symmetry $u(1)_1 \times u(1)_2$

 Gauging these flavor symmetries leads to unlinking, linking, and other two cases.

• Seiberg duality is local, so it can couple to external nodes.

• Unfortunately, we have not found the geometrical realization of the Seiberg-duality, or in other words, the cubic superpotential.

Dictionary

Quivers	3d gauge theories	3-mfds
C_{ij}	Mixed CS levels	Linking numbers
Equivalent quivers	Various dualities	Kirby moves w/ OV-branes
$(q,q)_{d_i}$	Matter fields	OV-defects/matter circles
\sum_{d_i}	Gauge symmetries	surgery circles/gauge circles

22

Open questions:

What is the geometrical realization of Seiberg-dualities?

• It looks that both quivers and knots can be constructed by OV construction. How to directly connect them? The answer may lead to the KQ correspondence.

Non-abelian theories, and F_K invariants

